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Gall-Inducing Insects: From Anatomy to Biodiversity

G. Wilson Fernandes, Marco A. A. Carneiro, and Rosy M. S. Isaias

16.1 Introduction

The earliest records of galls date to the times of Hippocrates (460–377 BC), Theophrastus (371–286 BC), 
and Pliny the Elder (23–79 AD). In his Historia Naturalis XXVI, published in the first century, Plinius, 
known as “the Merciful,” was the first to use the word “gall” to designate the structure induced in oak 
trees by wasps from the family Cynipidae (Meyer 1987). Although the emergence of insects from these 
structures has been described by these ancient authors, it was only in the 17th century, with the works 
of Marcello Malpighi (1628–1694), Anthony van Leeuwenhoek (1632–1723), and Jan Schwammerdam 
(1630–1680) that gall development was linked to the oviposition of an insect.

Galls, or vegetative tumors, are plant tissues or organs formed by hyperplasia (increased cell num-
ber) and/or hypertrophy (increased cell size) induced by parasitic or pathogenic organisms (Mani 1964; 
Dreger-Jauffret and Shorthouse 1992). Galls can be induced by a wide variety of organisms (Figure 
16.1), including viruses, bacteria, fungi, algae, nematodes, rotifers, copepods, and plants from the family 
Loranthaceae (popularly known as mistletoes), but are mainly caused by insects (Mani 1964; Raman et 
al. 2005).

Among all herbivorous insects, gall-forming insects are the most sophisticated because they are able 
to control and redirect the host plant for their own benefit. Galls represent a fascinating natural phe-
nomenon reflecting intimate interactions between organisms that have been shaped by organic evolution 
throughout millions of years (see Larew 1992; Labandeira et al. 1994; Labandeira and Phillips 2002; 
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370 Insect Bioecology and Nutrition for Integrated Pest Management

Stone et al. 2008). Gall-forming insects are able to modify the host plant’s growth pattern, altering the 
structure of the vegetative tissue and driving the host to produce a food source that is rich in nutrients and 
free from chemical defenses together with a protective structure that is isolated from the environment 
(Price et al. 1986; 1987).

Galls are also known and used for their pharmacological properties, which have been recognized 
since ancient times. Aleppo galls (spherical galls formed on the twigs of Quercus infectoria by gall-wasp 
larvae) contain 50% to 60% galactonic acid and significant levels of gallic and ellagic acids. These sub-
stances are used to treat diarrhea, oral swelling, and hemorrhoids. The commercial exploitation of galls 
dates to the 17th century, when pigments extracted from galls were used to dye hair and other tissues, and 
as writing ink (Fernandes and Martins 1985). In China, galls have been extensively used for more than 
1000 years in medicine, industrially, and as human food. In South America, the indigenous Aguaruna-
Jívaro people of the Peruvian Amazon use leaf galls from Licania cecidiophora (Chrysobalanaceae) to 
make necklaces (Berlin and Prance 1978).

Recently, interest in galls has increased because of their potential uses as biological control agents 
for invasive plants and as bioindicators of environmental quality and health (Fernandes 1987; Julião et 
al. 2005; Moreira and Fernandes 2007; Fernandes et al. 2010). Additionally, several authors have sug-
gested that the interaction between plants and gall-forming insects is ideal for testing hypotheses about 
ecological relationships (Fernandes and Price 1988; Price 2003). Gall-forming insects present certain 
methodological advantages as model organisms, primarily due to their sessile habit. Gall-forming insect 
communities frequently include many species from different orders; galls are conspicuous structures that 
are persistent on the plant and can be easily observed and collected. Further, the interactions between 
the inducing insects and other organisms can be easily manipulated (Fernandes and Price 1988; Stone 
and Schönrogge 2003).

16.2 Herbivore Insect Guilds

Herbivorous or phytophagous insects are those that consume living parts of plants. They make up the 
largest portion of all extant species diversity. Nearly 50% of all herbivorous organisms are insects 
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Figure 16.1 Galls induced by distinct organisms. (a) Insect-induced gall. (b) Acari-induced gall. (c) Ambrosia 
gall (induced by an insect symbiont fungus). (d) Fungus-induced gall (Witch’s broom). (e) Nematoid-induced gall. 
(f) Loranthaceae-induced gall (Struthantus flexicaulis).
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371Gall-Inducing Insects: From Anatomy to Biodiversity

(Gullan and Cranston 2005). Herbivorous insects are found in the orders Phasmatodea, Orthoptera, 
Thysanoptera, Hemiptera, Coleoptera, Diptera, Lepidoptera, and Hymenoptera (Triplehorn and Johnson 
2005).

Considering the great diversity of species, different classifications can be used to differentiate the 
forms of use and distributions of insects and their host plants. In most cases, these classifications are 
useful only for didactic purposes because they do not encompass the full range of interactions among 
the organisms or because the different classes of interactions are not precisely delimited. Herbivorous 
insects can be grouped in terms of the variation in the number of host plants they utilize. Monophagous 
insects utilize a single plant taxon; oligophagous insects utilize a few plant taxa that are usually phyloge-
netically related (i.e., from the same genus or family); and polyphagous insects utilize a wide variety of 
host plant species that are not phylogenetically related (Price 1997).

Insects can also be separated into functional groups according to the type and form of utilization of 
a particular resource. These groups are called guilds (Root 1967); that is, they consist of species that 
exploit the same food class (or other type of resource) in a similar way. The species within a guild may 
or may not be phylogenetically related (generally, they are not). Herbivorous insects are divided into five 
principal guilds: chewers, suckers, miners, drillers, and gall makers (Price 1997). Chewers and suckers 
feed externally on the host plant and are therefore called free-living or exophytic herbivorous insects. 
Chewers possess mouthparts that are specialized for chewing and consume tissues from roots, stems, 
leaves, flowers, and fruits. They belong to the orders Orthoptera (grasshoppers, crickets), Coleoptera 
(beetles, weevils), Lepidoptera (butterflies and moths), and Hymenoptera (wasps). Sucking insects pos-
sess mouthparts that are modified to consume sap from plant vessels or the liquid contents of plant cells. 
These insects can feed on xylem sap, which is found in the xylem vessels (cells that carry nutrients and 
mineral salts from the soil to the plant); on phloem sap, which is found in phloem sieve tubes (cells that 
distribute carbohydrates and amino acids throughout the plant); or on the intracellular contents of vegeta-
tive cells in various organs of the host plant. Sucking insects are found in the order Hemiptera (true bugs, 
leafhoppers, and aphids; see Chapters 13 and 20). Many chewing and sucking insects are specialized 
feeders on seeds, which are nutrient-rich compared with other plant tissues. These insects are commonly 
referred to as seed predators. Seed-predating insects are found in the orders Hymenoptera, Coleoptera, 
Hemiptera, and Lepidoptera. Among coleopteran seed predators, members of the subfamily Bruchinae 
(Chrysomelidae), which mainly attack plant species from the family Fabaceae, are particularly important 
(see Chapter 14).

The three remaining guilds (miners, drillers, and gall makers) consist of insects whose larvae feed 
internally on plant tissues. Therefore, they are called endophytic insects. Mining insects are those whose 
larvae live in and feed on plant tissue between the epidermal layers (Dempewolf 2005). According to 
this definition, miners generally feed on parenchyma in leaves, fruits, and the cortex of branches but do 
not include insects that feed on pith or deep tissues. As a mining insect feeds, it forms a characteristic, 
externally visible tunnel called a mine, which often appears as a whitish track on the leaf. Mines are 
canals formed by insects feeding inside the parenchyma or epidermal tissue of a plant whose external 
walls remain intact. These canals can assume a variety of shapes depending on the species involved 
(DeClerck and Shorthouse 1985). The tissue that is most often consumed is the palisade parenchyma in 
the mesophyll, but many species preferentially consume other types of tissue (DeClerck and Shorthouse 
1985). Mining insects are found in the orders Lepidoptera, Hymenoptera, Coleoptera, and Diptera (flies, 
midges) (Dempewolf 2005).

Drilling insects are differentiated from gall-making insects because they do not induce the formation 
of modified tissues, and from mining insects because they live and feed deeper within the plant tissue, 
forming cavities called galleries. Drilling insects can feed on living or dead tissue. Galleries are most 
often formed in stems but can also be formed in flower buds, roots, fruits, and seeds. Drilling insects are 
found in the orders Coleoptera, Lepidoptera, and Hymenoptera (Coulson and Witter 1984).

Gall makers are highly abundant, but their ecology and taxonomy remain poorly known; most gall-
forming species have been described relatively recently or remain undescribed (Espírito-Santo and 
Fernandes 2007). In general, gall-forming insects are defined as herbivorous insects that, to complete 
their life cycles, obligatorily induce pathological modifications in the tissue of their host plants (galls). 
The interaction between the insect and the host plant results in hypertrophy and/or hyperplasia of 
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the plant tissue (Weis et al. 1988). Gall-forming insects are found in all orders of herbivorous insects 
(Hemiptera, Thysanoptera [thrips], Coleoptera, Hymenoptera, Lepidoptera, and Diptera), with the excep-
tion of Orthoptera (Figure 16.2).

16.3 Gall-Inducing Insect taxa

Around 13,000 species of gall-inducing insects are known worldwide, representing about 2% of the total 
number of insect species (Dreger-Jauffret and Shorthouse 1992; Raman et al. 2005). However, recent 
estimates have extrapolated this value to nearly 120,000 species of gall-forming insects (Espírito-Santo 
and Fernandes 2007). The habit of inducing galls in plants has evolved independently several times 
among the phytophagous insects (Roskam 1992; Gullan et al. 2005), occurring in at least 51 families 
distributed in six different orders (Figure 16.3), and is found in all biogeographic regions. Still, some 
groups are more species-rich in some regions than in others. Because of the great diversity of gall-
forming insects and their host plants, and the great variability of the structures they form, we present 
some generalizations about the natural history, biology, and ecology of these organisms. More detailed 
information about each group can be found in a review by Raman et al. (2005).

16.3.1 Hemiptera

The order Hemiptera contains a large number of gall-forming insects distributed in 11 families, princi-
pally in the suborder Sternorrhyncha (Schaefer 2005). Less than a dozen species of gall-inducing insects 
are found in the suborder Heteroptera, all of them in the family Tingidae (Schaefer 2005).

The superfamily Psylloidea includes around 3000 described species of gall-forming insects, which 
are found mainly in tropical and temperate regions of the southern hemisphere (especially in tropi-
cal Asia and the Australian region) (Gullan et al. 2005). This group remains poorly studied in tropical 
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Figure 16.2 Orders of insects with gall-inducing species. (a) Gall induced by a Diptera: Cecidomyiidae (Paradasineura 
admirabilis Maia) in the host plant Erythroxylum suberosum (Erythroxylaceae). (b) Gall induced by a Hemiptera: Psyllidae 
(Baccharopelma dracunculifoliae Burkhardt) in the host plant Baccharis dracunculifolia (Asteraceae). (c) Gall induced by 
a Lepidoptera (unknown species) in Macairea radula (Melastomataceae). (d) Gall induced by a Hymenoptera: Cynipidae 
(unknown species) in the host plant Quercus turbinela (Fagaceae). (e) Gall induced by a Thysanoptera (unknown species) 
in an unidentified the host plant. (f) Gall induced by a Coleoptera: Brentidae: Apioninae in the host plant Diospyrus hispida 
(Ebenaceae).
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areas, which probably contain the greatest species richness of gall-forming insects (Burckhardt 2005). 
Species in the superfamily Psylloidea induce galls of various shapes that are conspicuous in plant spe-
cies from the families Asteraceae, Myrtaceae, Melastomataceae, Fabaceae, Lauraceae, Polygonaceae, 
Moraceae, and Salicaceae. For example, Ferreira et al. (1990) have described the biology and natural 
history of Euphaleurus ostreoides Crawford, which parasitizes a species of the family Fabaceae, while 
Lara and Fernandes (1994) and Espírito-Santo and Fernandes (2002) have described the natural history 
and ecology of Baccharopelma dracunculifoliae Burckhardt, which parasitizes Baccharis dracunculi-
folia (Asteraceae). Galls induced by species of the family Psylloidea are found in several plant genera, 
but they are particularly abundant in species of Baccharis (Burckhardt et al. 2004) and Eucalyptus 
(Burckhardt 2005).

1. Order Hemiptera 5. Order Lepidoptera
Suborder Heteroptera Family Nepticulidae

Family Tingidae Family Heliozelidae
Suborder Sternorrhyncha Family Prodoxidae

Family Psyllidae Family Cecidosidae
Family Aleyrodidae Family Bucculatricidae
Family Aphididae Family Gracillariidae
Family Phylloxeridae Family Tponomeutidae
Family Adeligidae Family Ypsolophidae
Family Eriococcidae Family Glyphipterigidae
Family Kermisidae Family Elachistidae
Family Asterolecaniidae Family Oecophoridae
Family Coccidae Family Coleophoridae
Family Diapididae Family Cosmopterigidae

2. Order Thysanoptera Family Gelechiidae
Suborder Tubulifera Family Sesiidae

Family Phlaeotripidae Family Torticidae
Suborder Terebrantia Family Alucitidae

Family Thripidae Family Pterophoridae
3. Order Coleoptera Family Crambidae

Suborder Polyphaga Family Thyrididae
Family Cerambycidae 6. Order Diptera
Family Chrysomelidae Suborder Nematocera
Family Brentidae Family Cecidomyiidae
Family Curculionidae Suborder Cyclorrhapha
Family Buprestidae Family Tephritidae
Family Mordellidae Family Chloropidae
Family Nitidulidae Family Agromyzidae
Family Scolytidae Family Anthomyzidae

4. Order Hymenoptera Family Clythiidae
Suborder Symphyta

Family Tenthredinidae
Suborder Apocrita

Family Agaonidae
Family Pteromalidae
Family Erytomidae
Family Cynipidae

Figure 16.3 Families of gall-inducing insects are distributed into six different orders and found in all biogeographic 
regions.
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The superfamily Coccoidea consists of plant parasites found in all biogeographic regions except the 
polar regions. They are classified into nearly 20 families, among which 230 gall-forming species (3% 
of known coccoidean species) are found in 10 families (Gullan et al. 2005). Coccoidean insects induce 
galls in 20 angiosperm families, principally in Myrtaceae (around 130 species), Fagaceae, Asteraceae, 
Ericaceae, and Verbenaceae. Records of galls formed by species of Coccoidea are rare in the Neotropics, 
although Gonçalves et al. (2005, 2009) have presented some biological and anatomical aspects of galls 
induced by Pseudotectococcus rolliniae Hodgson and Gonçalves (Eriococcidae) in Rollinia laurifolia 
(Annonaceae).

The superfamily Aphidoidea includes around 440 species of gall-forming aphids (Wool 2004). They 
exhibit complex life cycles, alternating between primary and secondary hosts and entering into sexual 
and parthenogenetic reproduction (holocycle). Each gall is induced by a single individual, the founder, 
which reproduces by parthenogenesis (Wool 2005). Thus, every individual within a gall is genetically 
identical. The individual insects within a gall obtain their food by sucking phloem contents from the 
vascular system of the plant inside the gall, but they are not capable of inducing gall formation. The 
number of nymphs per gall is highly variable but can reach thousands. For example, the host plant Rhus 
glabra (Anacardiaceae) can abscise its leaves in response to the galls induced by Melaphis rhois Ficht 
(Aphididae), which can contain more than 1700 nymphs in a single chamber (Fernandes et al. 1999).

16.3.2 Thysanoptera

The order Thysanoptera includes about 5500 species distributed in nine families, but gall-forming 
species are found mainly in the subfamily Phlaeothripinae (Mound and Morris 2005). Gall-inducing 
Thysanopteran species are found in all biogeographic regions, especially in tropical Asia and the 
Australian region (Mound and Morris 2005). These insects live in colonies formed by multiple individu-
als. It is common to find more than one species associated with a single gall, thus making it difficult to 
determine the species responsible for inducing the gall. The galls are formed mainly on leaves, in flow-
ers, or in fruits. Records of galls formed by species in the order Thysanoptera are rare in the Neotropics 
(Souza et al. 2000), although they are common in some species of the Brazilian Cerrado biome (GWF, 
personal observation).

16.3.3 Coleoptera

There are few gall-forming coleopteran species relative to the high species richness of beetles associated 
with plants. Gall-forming beetles are found mainly in the family Curculionidae. The habit of inducing 
galls is found exclusively in the derived superfamilies Chrysomeloidea and Curculionoidea. In these 
groups, the larvae are more sedentary, with reduced sensory (ocelli and antennae) and locomotor (legs) 
abilities, and present a lack of pigmentation on the body (Korotyaev et al. 2005).

Beetle larvae possess chewing mouthparts and cause considerable structural damage within galls, 
resulting in the rapid destruction of the tissues in contact with the larvae (Dreger-Jauffret and Shorthouse 
1992). Galls induced by coleopterans can be recognized by the presence of large internal chambers. There 
may be one or multiple chambers within each gall, generally hosting only one larva per chamber. The 
pupal phase may occur inside the gall or in the soil; in the latter case, the larva pierces the wall of the gall 
and reaches the soil to initiate the pupal phase. The galls are primarily induced on branches and roots, 
but some insects from the superfamily Curculionoidea induce galls in leaves and flowers (Korotyaev 
et al. 2005). Galls induced by coleopterans vary from simple tumescences to structures that look like 
fruits, which are very different from the healthy organs of the plant (Souza et al. 1998; Korotyaev et al. 
2005). There is no differentiation of nutritive tissue. Coleopterans induce galls in various plant fami-
lies, including Asteraceae, Solanaceae, Brassicaceae, and Fabaceae. For example, Collabismus clitel-
lae Boheman induces globular galls on the stems of Solanum lycocarpum (Solanaceae) in the cerrado 
(Souza et al. 1998, 2001), while Apion sp. (Brentidae) induces galls in sprouts of Diospyros hispida 
(Ebenaceae) (Araújo et al. 1995; Souza et al. 2006). In the Brazilian Cerrado biome, coleopteran galls 
are frequently used by large ant communities as shelter and for nest building (Craig et al. 1991; Araújo 
et al. 1995).
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16.3.4 Hymenoptera

Along with the order Diptera, the order Hymenoptera presents the most complex entomogenous galls. 
Gall-inducing species of the order Hymenoptera are distributed into five families (Tenthredinidae, 
Cynipidae, Agaonidae, Tanaostigmatidae, and Eurytomidae) and are found in all biogeographic regions 
(Dreger-Jauffret and Shorthouse 1992; Stone et al. 2002).

The family Tenthredinidae (suborder Symphyta) consists of species that are primitively phytophagous. 
Their larvae are adapted to utilize a variety of resources, feeding externally or internally on plant tissues 
from branches, leaves, and fruits (Gauld and Bolton 1988). The distribution of gall-inducing species is 
restricted to the Northern Hemisphere, with records in the Palearctic, Nearctic, and Oriental regions 
(Roininen et al. 2005). Most wasps of the family Tenthredinidae are species specific; a few exceptions are 
known to induce galls in a few related host plant species. These wasps induce galls in leaves, branches, 
and flower buds in 11 genera in five angiosperm families (Salicaceae, Rosaceae, Caprifoliaceae, and 
Grossulariaceae) and one gymnosperm family (Pinaceae) (Price 2003).

There is an extensive literature concerning the biology and ecology of gall-inducing species that para-
sitize the genus Salix (Price 2003). Prominent among these insects are members of the family Cynipidae, 
which includes 1000 species in 41 genera that are mainly found in the Northern Hemisphere (Ronquist 1995; 
Liljeblad and Ronquist 1998). The largest number of known species occurs in the Nearctic region, particu-
larly in Mexico, where 700 species of wasps in 29 genera are estimated to occur (Ronquist 1995; Liljeblad 
and Ronquist 1998). Species from the family Cynipidae are found on all continents except Australia. In 
terms of number of gall-forming species, this family is exceeded only by the family Cecidomyiidae; how-
ever, these families are equal in terms of their complexity and the great variety of families of host plants 
that they parasitize, especially Fagaceae, Fabaceae, Rosaceae, and Aceraceae (Csóka et al. 2005).

Chalcidoidea is a large superfamily of parasitoid wasps that attack numerous hosts. More than 20,000 
species are known (Noyes 2002, 2003). Gall-inducing species in this superfamily are found in six 
families: Agaonidae, Eulophidae, Eurytomidae, Pteromalidae, Tanaostigmatidae, and Torymidae (La 
Salle 2005). Here, we comment on some aspects of the biology of the three largest families within the 
Neotropical region.

Wasps belonging to the family Agaonidae (Hymenoptera: Chalcidoidea) include many species that 
are intimately associated with the inflorescences of species of the genus Ficus (Moraceae) (Galil and 
Eisikowitch 1968; Wiebes 1979; Weiblen 2002). Species of the family Agaonidae can induce galls inter-
nally, penetrating figs as their pollinators, or externally (Kerdelhué et al. 2000; Kjellberg et al. 2005). 
This family contains more than 900 species and is found in tropical regions (Price 1997). The intimate 
and specific interactions between species of the family Agaonidae and their host plants may represent 
one of the clearest example of coevolution.

Tanaostigmatidae is a small family of wasps with a principally Neotropical distribution. Currently 92 
species are known in nine genera worldwide (La Salle 2005). The great majority of species in this family 
induce galls or are tenants in galls induced by other insects (Hardwick et al. 2005; La Salle 2005). These 
wasps induce galls in bushes and trees of the families Fabaceae, Polygonaceae, Lecythidaceae, and 
Rhamnaceae (La Salle 1987, 2005). Fernandes et al. (1987) have recorded the first occurrence of tenant 
behavior in a species of this family in galls induced by a species of Anadiplosis (Diptera: Cecidomyiidae) 
on the legume Machaerium aculeatum.

The family Eurytomidae includes 1420 described species in 87 genera (Noyes 2002). Species of this 
family include parasitoid species, phytophagous species, gall-inducing species and tenants of galls. The 
gall-forming species are united in the subfamily Eurytominae. Galls are induced in species of the fami-
lies Myrtaceae, Campanulaceae, Boraginaceae, Orchidaceae, and Pinaceae (2005). The number of galls 
induced by species in this family is likely to increase in tropical regions as more studies are conducted 
(Leite et al. 2007).

16.3.5 Lepidoptera

About 180 species of gall-forming lepidopterans have been identified. These insects parasitize members 
of 20 plant families. The lepidopteran families with the largest numbers of species are Gelechiidae and 
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Tortricidae (47 and 39 species, respectively). Gall-forming lepidopteran species occur in all biogeo-
graphic regions (Miller 2005).

Because of their feeding habits and chewing mouthparts, the larvae rapidly destroy tissues with which 
they come into contact. Lipid-rich nutritive tissues were detected in several lepidopteran galls by Vecchi 
(2004). Most galls formed by lepidopteran insects contain a single chamber hosting a single larva. The 
galls are induced by the larvae, except in the species Heliozela staneella Fischer Von Röslerstamm 
(Heliozelidae), in which the female injects a gall-inducing substance during oviposition (Miller 2005). 
In addition to the identification of immature individuals, galls from species of Lepidoptera can be recog-
nized by the large quantity of feces left by the larva.

Galls formed by lepidopteran species present a great variety of shapes, from simple tumescences to 
more complex structures that appear similar to fruits, which are very different from the healthy organs 
of the plant (Dreger-Jauffret and Shorthouse 1992). Galls are predominantly induced in the branches, 
although they also commonly develop in leaves of Melastomataceae (Gonçalves-Alvim et al. 1999). 
Lepidopteran species induce galls in at least 41 families of host plants, especially Asteraceae, Salicaceae, 
and Fabaceae (Miller 2005).

16.3.6 Diptera

Gall-forming species in the order Diptera occur in seven families, but mainly in the families 
Cecidomyiidae and Tephritidae. Species of the family Cecidomyiidae are the most important gall-
forming insects and are widely distributed in all biogeographic regions, with 5451 described species 
in 598 genera (Gagné 2004). Their total number may exceed 100,000 species (Espírito-Santo and 
Fernandes 2007). Most of the species belonging to this family are associated with plants, inducing 
galls or living as tenants therein, while a few species are predatory (Gagné 1994). Species of the 
subfamily Porrycondilinae feed on fungi, a condition considered ancestral with respect to the habit 
of inducing galls (Gagné 1994). Some species can induce galls in related plant species of the same 
genus or family. The existence of polyphagous species (using host plants from different families) is 
rare in the family Cecidomyiidae. Members of this family are particularly species-rich in certain plant 
families and genera, depending on the biogeographic region. In the Neotropical and Nearctic regions, 
they are most diverse in host plants from the genera Baccharis and Solidago (Asteraceae), respectively 
(Gagné 1989; Fernandes et al. 1996). In the Neotropical region, they are less numerous, with 500 spe-
cies and 170 genera recorded (Maia 2005). In Brazil, 159 species and 75 genera have been described 
(Maia 2005). Many species described from Brazil are found in the restinga vegetation (a community 
characterized by shrubs and low forests growing on sandy dunes) in the state of Rio de Janeiro (Maia 
2001a,b), where 95 species and 47 genera have been recorded (Maia 2005). However, records of spe-
cies from the family Cecidomyiidae have increased considerably in recent years (Maia and Fernandes 
2004, 2006).

Approximately 5% of the 4300 described species in the family Tephritidae are gall inducers, the 
majority of which belong to the subfamily Tephritinae (Freiberg 1998; Korneyev et al. 2005). The galls 
are induced principally in branches, flowers, leaves, and roots. More than 90% of the galls known to 
be induced by members of this family occur in host plants of the family Asteraceae (Freiberg 1998). 
For example, Tomoplagia rudolphi (Lutz & Lima) forms galls in Vernonia polianthes (Asteraceae), 
which is widely distributed in southeastern Brazil (Silva et al. 1996). The families Melastomataceae, 
Aquifoliaceae, Acanthaceae, Fabaceae, and Onagraceae are also attacked by gall-forming species of 
this family.

Gall-forming insects of the family Chloropidae are apparently restricted to host plants of the fam-
ily Poaceae, except for species of a genus that induce galls in species of the genus Scirpus (family 
Cyperaceae) (Dreger-Jauffret and Shorthouse 1992). As in other gall-forming cyclorrhaphan dipterans, 
the gall-forming process is not initiated at oviposition. The eggs are laid externally on branches or on the 
leaf surface. After hatching, the larva actively penetrates the branch, opening a hole with its mouthparts 
(Bruyn 2005). Once inside the branch, the larva begins to feed on the leaves that surround the meristem. 
Although the family is widely distributed, studies on gall-making species of Chloropidae are concen-
trated in the Palearctic and Nearctic regions.
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16.4 Host Plant taxa

Vascular plants, including gymnosperms (mainly conifers) and angiosperms, are the main hosts of gall-
forming arthropods. In general, flowering plants (angiosperms) host more species of gall-forming insects. 
For example, in Brazil, plant families that are associated with a large number of gall-forming insects 
include Asteraceae, Myrtaceae, Malpighiaceae, Fabaceae, Rubiaceae, and Bignoniaceae (Fernandes 
1987, 1992; Fernandes et al. 1988, 1996, 1997; Julião et al. 2002; Maia 2001b; Maia and Fernandes 2004). 
In one area of the Brazilian Cerrado, in Minas Gerais, the families Fabaceae, Myrtaceae, Malpighiaceae, 
Bignoniaceae, and Malvaceae accounted for 65% of the host plant species and hosted 70% of the gall-
forming insect species (Gonçalves-Alvim and Fernandes 2001a,b). However, a brief analysis indicates 
substantial variation among biomes in the frequency of families attacked by gall-forming insects. This 
variation may be explained by the relative frequency of occurrence of the plant families. Broader studies 
across all Brazilian biomes are needed to better understand these patterns.

The species richness of gall-forming insects varies widely across biogeographic regions, and galls 
occur much more frequently in certain plant taxa. Species of the genus Baccharis (Fernandes et al. 1996), 
for example, have a large number of associated insect species (Table 16.1). In the region of Ouro Preto, 
Baccharis pseudomyriocephala (Figure 16.4) hosts 11 species of gall-forming organisms (Araújo et al. 
2003). In addition to Baccharis, species of Copaifera (Neotropical region; GWF, personal observation; 
Oliveira et al. 2008), Solidago, and Chrysothamnus (Neartic region; GWF, personal observation; Gagné 
1994, Fernandes 1992) are rich in species of Cecidomyiidae; species of Quercus and Rosa (Nearctic 
region) and Acacia (Ethiopic region) are rich in species of Cynipidae (Shorthouse and Rohfritsch 1992; 
Stone et al. 2002); and species of Eucalyptus (Australian region) are rich in species of Chalcidoidea and 
Coccoidea (Blanche 1994). In the Sonoran desert, Atriplex, Chrysothamnus, and Larrea host a high 
diversity of gall-forming insects (McArthur 1986; McArthur et al. 1979; Fernandes and Price 1988; 
Waring and Price 1990). These data indicate the existence of super-hosts, that is, host plant taxa that 
sustain a large number of associated gall-forming insects (Fernandes and Price 1988; Veldtman and 
McGeoch 2003; Espírito-Santo et al. 2007). This conclusion is supported by the fact that few host plant 
taxa support a large number of insect species, independently of the sampling method (Hawkins and 
Compton 1992). However, the ecological mechanisms and selective pressures that influence these pat-
terns within certain taxa remain unexplained or have not been adequately studied.

16.5 Location and Choice of the Host Plant

The free-living stage (adult stage) of gall-inducing insects is very short compared with the time they 
spend immersed in host plant tissues. In some cases, the larval stage may take several months. However, 
the adult stage is of extreme importance as it is at this stage of their life cycle that the galling herbivores 
must find their appropriate host plants and organs within all the available options. This is not an easy 
task as all plants may present a mosaic of resistance mechanisms to defend themselves against unbidden 
guests. The most studied ones are the physical and chemical defenses. Physical defenses include several 
types of trichomes that impair movement or even trap the adults, and tissue sclerophylly, which confer 
resistance to oviposition and feeding (Woodman and Fernandes 1991; Fernandes 1994; Lucas et al. 2000; 
Chen 2008). Further, as pointed out by Rasmann and Agrawal (2009), plant defenses are dependent on its 
genetics, ontogenesis, and also on environmental factors. Together, these features shape the multivariate 
defensive phenotype and outcome of the interaction. Also, the chemical defenses include the synthesis 
and accumulation of secondary metabolites (Gottlieb et al. 1996; Cheng et al. 2007). By the time the host 
plant and organ are found, a succession of recognizing systems between both organisms are required to 
permit gall development (Rohfritsch 1992). However, the elucidation of the plant’s response to herbivore 
attack is much complex for it is difficult to establish the relevance of a particular trait for the interaction 
(Rasmann and Agrawal 2009).

For galling herbivores, host selection is vital because it is the offspring that stays most of their lifetime 
inside the host plant tissues, and most defenses are against the larval stage. On the basis of the crucial 
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TabLe 16.1

Number of Galling Species on Species of the Genus Baccharis

Host Plants Galling Richness

Baccharis aphylla 1

Baccharis artemisioides 1

Baccharis bogotensis 2

Baccharis boyacensis 1

Baccharis capitalensis 1

Baccharis cf. bacchridastrum cabr. 1

Baccharis concinna 15

Baccharis confertifolia 1

Baccharis coridifolia 2

Baccharis dracunculifolia 17

Baccharis effusaaphylla 1

Baccharis elaegnoides 1

Baccharis eupatorioides 3

Baccharis genistelloides 1

Baccharis glutinosa 1

Baccharis latifolia 5

Baccharis lineares 1

Baccharis macrantha 2

Baccharis microphylla 1

Baccharis myrsinites 1

Baccharis nitida 2

Baccharis paucidentata 2

Baccharis platypoda 3

Baccharis poeppigiana 1

Baccharis prunifolia 1

Baccharis pseudomyriocephala 11a

Baccharis rosmarinifolia 7

Baccharis salicifolia 13

Baccharis schultzii 2

Baccharis serrulata 4

Baccharis spartioides 2

Baccharis subulata 2

Baccharis tricuneata 1

Baccharis trimera 1

Baccharis trinervis 2

Baccharis vulnerave 1

Total 125

a Fernandes G. W., et al., Trop. Zool., 9, 315, 1996; Araújo, A. P. A., 
et al., Rev. Bras. Entomol., 47, 483, 2003.
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events required to gall establishment, Moura et al. (2009) showed that the absence of Aceria lantanae 
(Acari) galls on sympatric varieties of Lantana camara (Verbenaceae) that present pink and white flow-
ers could be related to their chemical contents and density of trichomes, which constitute part of the 
first line of resistance to herbivores, in general (Levin 1973, Woodman and Fernandes 1991, Lucas et al. 
2000). Phytochemical profiles showed differences that could explain the selection of the group with red 
flowers as the host plants by the mite.

16.6 Gall Morphology

Galls can be formed on any organ of the host plant; nevertheless, the leaf is the most susceptible of the 
plant organs for the development of galls, and relatively few galls occur on branches, vegetative parts, 
or floral buds (Dreger-Jauffret and Shorthouse 1992). Although galls on fruits are not so numerous as 

(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 16.4 Galls induced by different species on Baccharis pseudomyriocephala Teodoro. Galls from G1 until G8 are 
induced by species of Cecidomyiidae (Diptera); gall G9 is induced by a species of Lepidoptera, while gall G10 is induced 
by a species of Psyllidae (Hemiptera) (the galling insect species are unknown). (From Araújo, A. P. A., et al., Rev. Bras. 
Entomol., 47, 483, 2003.)
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galls on vegetative organs, they are interesting models to study sink and source relationships and of phe-
nological synchronism. As an example, there is an unidentified species of wasp that oviposits through 
the pericarp of immature fruits of Eugenia uniflora. The mature galls are multichambered and no seeds 
develop, which constitute a serious damage to the host plant reproduction (Figure 16.5). There must be a 
synchronism between the life cycles of the wasp and the reproductive phase of E. uniflora; otherwise, the 
gall-inducing organism life cycle should be interrupted. Dorchin et al. (2006) affirm that the phenology 
and position of the gall on its host plant influence its ability to compete with other sinks. By the size and 
number of insects inside the galls on the fruits of E. uniflora, this affirmation seems to fit this system. 
In a Cerrado (savanna) vegetation reserve in Minas Gerais (Brazil), about 60% of the insect galls are 
formed on the leaves (Gonçalves-Alvim and Fernandes 2001a,b). In vegetation of rupestrian fields, the 
percentage of galls on the leaves was also similar, while in another Cerrado formation in Serra of San 
José, 70% of the galls were induced on leaves (Maia and Fernandes 2004). However, ratios may change 
as scale changes. For instance, in Baccharis concinna, B. pseudomyriocephala, and B. dracunculifolia 
most galls develop on stems (Fernandes et al. 1996; Araújo et al. 2003).

Morphological, biochemical, and phylogenetic studies on aphids (Stern 1995), cynipids (Stone and 
Cook 1998), sawflies (Nyman et al. 2000), and thrips (Crespi and Worobey 1998) support the idea that 
the morphology of the gall is defined by the inducing insect and not by the host plant. Thus, the gall 
may be understood as an extended phenotype (sensu Dawkins 1982) of the inducing insect (Weis et al. 
1988; Bailey et al. 2009). Besides the morphology, the inducing insect is also capable of controlling 
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Figure 16.5 Galls induced by an unidentified species of Hymenoptera in fruits of Eugenia uniflora L. (Myrtaceae). 
(a) Immature non-galled fruit. (b) Immature fruit opened to show sites of oviposition through pericarp (arrow). (c) Detail 
of oviposition site (arrows). (d) Mature multichambered gall. (e) Detail of two larval chambers with insect’s excrement. 
(Photos courtesy of R. M. S. Isaias.)

K11678_C016.indd   380 10/5/2011   12:26:14 PM

André Quintino
Riscado

André Quintino
Nota
Change to:Nyman 2000



381Gall-Inducing Insects: From Anatomy to Biodiversity

the chemical properties of the galls (Nyman and Julkunen-Tiito 2000), which may be regulated by the 
feeding activity of the insect, indicating that gall development depends on the behavior of its inducing 
insect. Insects that feed moving in a circle should produce round galls; insects that feed at one end of 
the gall (usually at the base) produce conical galls; while in lenticular galls, insects feed in the lateral 
margins (Rohfritsch and Shorthouse 1982). Thus, it is reasonable to assume that the gall has a function 
or adaptive significance for the inducing insect (see Price et al. 1986, 1987). The shape of the gall seems 
to be independent of the host plant, but as it is completely formed of plant tissues, its development must 
obey some constraints imposed by the cycle of the host plant cells at the site of oviposition. The gall is 
a phenotypic entity that represents the interaction between the genotype of the insect, that of the host 
plant, and the environment (Weis et al. 1988). Since most aspects of gall morphology are controlled by 
the galling insects, it is clear that the size and shape of the gall is crucial for their survival. Thus, if gall 
morphology results in differential survivorship, and the insect population shows a heritable variation in 
the ability of setting this feature, then the selection can act on it.

One of the best-studied galling insects is Eurosta solidaginis Fitch (Tephritidae), which induces galls 
on Solidago altissima (Asteraceae) and a few related species (Abrahamson and Weis 1997). In this 
system, gall size is important for the survival of the insect, although the genotype of the host plant has 
an important role in determining the characteristics of the gall. The variation in this gall morphology 
is explained by the genotype of the inducing insect. Thus, this system has proved that gall morphology 
should be understood as the extended phenotype of the insect and adaptive explanations can be related 
to the fitness of the insect.

16.7 Gall Anatomy and Physiology

The complexity in the structure of galls may vary by several degrees. The galls may vary from simple 
and isolated cytological transformations to a new arrangement of plant tissues. In these cases, the galls 
may be defined as new multicellular organs generated by coordinated cell division and expansion. The 
variation in morphological complexity is also followed by a variety of physiological traits.

In general, the galls induced by Cecidomyiidae and Cynipidae are the best studied from the structural 
point of view. The Cynipidae galls have two cortical regions, the inner cortex formed by a multilayered 
nutritive tissue located around the larval chamber and the outer cortex with a reserve tissue externally 
delimited by the epidermis. In some galls, the outer cortex is limited from the inner one by a thin layer of 
sclerenchyma. In fact, the high diversity of the outer cortex is said to be responsible for the great variety 
of gall morphotypes (Stone et al. 2002). Also, the number of larvae or nymphs per chamber may vary 
from one to hundreds, and may also be responsible for variations in the final size and shape of galls. 
Therefore, galling insects do not only control the developmental patterns of the host plant, so as to define 
the gall phenotype, but also its physiology. Moura et al (2009) studied the ontogenesis of galls induced 
by an Acari and proposed that the cell divisions alter the leaf pattern first related to photosynthesis, and 
result in a new verrucous structure that guarantee an adequate microenvironment and nutrition source. 
This is also true for the majority of the gall morphotypes, from the simplest ones to the most complex.

That galls are sinks of photoassimilates is common sense (Larson and Whitham 1991; Larson 1998; 
Dorchin et al. 2006). Lemos Filho et al. (2007) presented data on the transpiration and photosynthetic 
performance in galls of two species on Aspidosperma (Apocynaceae) from southeast Brazil. These data 
showed that gall induction did not affect the photosystem II, and consequently there was no reduction of 
the relative electron transport rates. By establishing a relationship between the physiological and morpho-
logical features of the two gall systems, they concluded that the galls may produce photoassimilates, but 
in such low values that it seems improbable that they could guarantee gall maintenance without draining 
resources from their host organ. Another important feature are the physiological gradients inside and 
outside the gall tissues (Bronner 1992; Hartley 1998; Nyman and Julkunen-Tiito 2000). These gradients 
have revealed specific enzymatic activities and are also accompanied by cytological peculiarities (Rehill 
and Schultz 2003; Oliveira and Isaias 2010a,b; Oliveira et al. 2010). The galls function as sinks of nutrients 
mobilized from the other host plant parts (Kirst and Rapp 1974; Fay et al. 1993; Whitham 1992). A large 
set of evidences support that the galling insect is able to manipulate the host plant, inducing the formation 
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of nutritionally superior cells in comparison to the other healthy plant tissues, the nutritive tissue (Mani 
1964; Shannon and Brewer 1980; Bronner 1992; Rohfritsch and Shorthouse 1992). The cells of this tis-
sue have a high concentration of lipids, glucose, amino acids, and a high enzymatic activity, including 
phosphatases, proteases, and aminopeptidases rich in RNA and ribosomal RNA of the nucleolus (Bronner 
1992). On the other hand, the parenchyma cells of the outer cortex form a reserve tissue characterized by 
a high concentration of starch, low concentration of lipids and glucose, and low enzyme activity. As the 
larva feeds on the cells of the nutritive tissue, there is a replacement of substances by the cells of the reserve 
tissue (Bronner 1992). The translocation of substances between the two tissue zones has been proven to 
need an intense enzymatic activity (Bronner 1992; Oliveira and Isaias 2010b; Oliveira et al. 2010). Also, 
the substances accumulated may be diverse, such as proteins, carbohydrates, and lipids (Figure 16.6).
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Figure 16.6 Histochemistry of galls. Flavonoid derivatives detected with 3,3′-diaminobenzidine in Calliandra brevipes 
Benth: (a) non-galled stem; (b) stem gall. Machaerium uncinatum (Vell.) Benth: (c–d) Phenolic derivatives detected by fer-
ric chloride in leaf galls; (e) lipids detected by Sudan Red B in cell wall and cuticle. (f) M. hirtum (Vell.) Stellfeld. Proteins 
detected by Coomassie blue in leaf galls. (g–i) Leaf galls of M. aculeatum Raddi. (g) Proteins detected by Coomassie blue. 
(H) Starch detected by Lugol’s reagent. (i) Carbohydrates detected by PAS. (Photos courtesy of R. M. S. Isaias.)
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Once the starch that accumulated in the reserve tissue cannot be directly used either for the gall-
inducing larva or for the gall machinery, carbohydrate conversion is necessary. Oliveira et al. (2010c) 
detected the activity of the glucose-6-phosphatase, an enzyme responsible for the synthesis of intermedi-
ate compounds before the formation of sucrose in galls of Cecidomyiidae. Also, these authors detected a 
gradient of invertases, generally related to physiological sinks (Koch and Zeng 2002; Rehill and Schultz 
2003), that fit the gradient of starch and sugars, and should provide resources to cell expansion and to the 
metabolism of the nutritive tissue. The detection of sucrose synthase was related to the maturation and 
formation of reserve tissues in gall systems. Thus, enzymatic gradients play key roles in maintaining the 
supply of nutrients for the developing galling larva (Bronner 1992), and also function in the maintenance 
of gall structure.

The nutritive tissue does not present defensive secondary compounds (Hartley and Lawton 1992; 
Hartley 1998; Nyman and Julkunen-Tiito 2000), which may be detected in the outer cortical layers 
(Figure 16.6). Studies in galls induced by sawflies on willow (Salix spp.) showed that toxins are com-
monly accumulated in the outer cortex, suggesting that the insect can benefit from their defensive 
properties against other insects (Nyman and Julkunen-Tiito 2000). These substances may have nega-
tive effects on the growth, development, or survival of another organisms (Wittstock and Gershenzon 
2002), such as the natural enemies. In galls, the role of defense against natural enemies has been com-
monly attributed to phenolics. However, Formiga et al. (2009) did not find any relationship between 
the level of phenolics in Aspidosperma spruceanum and the degree of gall infestation by a galling 
Cecidomyiidae. Moreover, Abrahamson et al. (1991) affirmed that higher phenolic concentrations 
restricted to the gall tissues induced by E. solidaginis on S. altissima could also potentially play a role 
in gall formation by influencing the hormonal control of growth. Thus, the influence of phenolics in 
host plant–galling herbivore systems seems to be much more complex than just constitutive chemical 
defense.

In Brazil, few studies on the chemistry of galls have been developed, but the chemical analysis in a 
Lepidoptera–Tibouchina pulchra (Melastomataceae) system showed that defensive compounds were less 
abundant in the nutritive tissue, and more frequent in the outer cortex of the gall, corroborating the gen-
eral premise. Moreover, carbohydrates and lipids were more abundant in the tissues of the gall than in the 
non-galled tissues of the host plant (Motta et al. 2005). However, in some galls, such as those induced by 
few species of Cecidomyiidae, there is no formation of a nutritive tissue (Bronner 1992). In these cases, 
two types of feeding strategies can be identified. The larvae feed directly from the contents of the cells 
(Gagné 1994) or from hyphae of fungi that line the larval chamber (Bronner 1992). This is the case of the 
ambrosia galls induced by three tribes of Cecidomyiidae: Asphondyliini, Alycaulini, and Lasiopterini 
(Meyer 1987; Yukawa and Rohfritsch 2005). The ambrosia galls received this name in reference to the 
similarities in food habits of these Cecidomyiidae and the ambrosia beetles (Meyer 1987). The hyphae 
of fungi are introduced into plant tissues during oviposition of the Asphondyliini, or by the first instar 
larvae in Alycaulini and Lasiopterini (Yukawa and Rohfritsch 2005). Up to the moment, ambrosia galls 
were found in B. concinna, B. dracunculifolia (Arduin and Kraus 2001), and in Bauhinia brevipes (Sá et 
al. 2009) in Brazil. These galls do not differ in external morphology from the galls where no association 
with fungi was detected.

16.8 Gall Development

The development of galls has four distinct phases: induction, growth and differentiation, maturation, 
and dehiscence (Dreger-Jauffret and Shorthouse 1992; Arduin et al. 2005). The induction phase is 
characterized by a sequence of events that define the recognition of the oviposition site (tissue, organ, 
and host plant), and the behavior of the inducing insect. It is a critical stage, and events during ovipo-
sition and/or feeding promote crucial changes in the tissues of the host plant. Generally, the galling 
larvae require a reactive, meristematic tissue for the formation of galls (Mani 1964; Weis et al. 1988; 
Dreger-Jauffret and Shorthouse 1992); however, there are cases of gall induction on non-meristematic 
tissues, as in the ambrosia galls on B. concinna and B. dracunculifolia (Arduin and Kraus 2001). Also, 
some insects may induce galls on immature or mature tissues, and in these cases, the mature galls 
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may present anatomical and developmental features with distinct adaptive values (Oliveira and Isaias 
2009). As a whole, the galling insect manipulates the potentialities of the host plant tissue to its own 
benefit. It conquers nutrition, protection, and an adequate microenvironment by generating patterns 
of cell redifferentiation (see Price et al. 1987). Moura et al. (2009) and Oliveira and Isaias (2010a) 
presented some ontogenetical analyses of gall development since the host leaf in its meristematic 
stage until gall maturation. These studies showed the correspondence of the tissue fates in non-galled 
organs and in galls of L. camara (Verbenaceae) and Copaifera langsdorffii (Fabaceae), respectively. 
Comparing these two gall systems, it is possible to set the ground meristem as the most plastic of the 
leaf tissues, capable of assuming several fates other than its primary one, the photosynthetic cells. In 
galls, the cells that originated from the ground meristem are redifferentiated into nutritive, protective, 
and also reserve tissues.

As the molecular mechanisms of gall induction and development remain mostly unknown about galls 
induced by insects, there is a great debate about the role of the insect and the host plant in the formation 
of the gall. In general, the gall-inducing stimuli originate during the feeding of the first instar larvae and 
more rarely during oviposition (body fluids of the female or the egg). In some groups, the role of the 
feeding activity of the larvae may have greater or lesser participation in gall development. For example, 
in Tenthredinidae, gall induction is initiated by the produced fluids of the accessory glands of the female 
reproductive system, injected into plant together with the eggs during oviposition (Meyer 1987). In the 
galls of Cynipidae, the induction process may have its origin in the fluids of the female egg or the larva 
(Bronner 1973; Rohfritsch and Shorthouse 1982). In Coleoptera, the galls can be induced by the lar-
vae (e.g., Buprestidae) or during oviposition, when the eggs are laid in a cavity prepared by the female 
(Korotyaev et al. 2005). In some hemipteran galls, that is, Psylloidea (Burckhardt 2005) and Coccoidea 
(Gullan et al. 2005), the galls are usually initiated by the feeding activity of the first instars. In the galls 
induced by P. rolliniae (Eriococcidae) on R. laurifolia (Annonaceae), the second instar nymph induces 
sexually dimorphic galls (Gonçalves et al. 2005). Moreover, this species of Eriococcidae induces a stem 
gall for diapause to survive in the period when leaves of the host are shed (Gonçalves et al. 2009). Even 
though some new strategies of survival have been reported for Neotropical galling insects, the exact 
mechanism of the manipulation of host plant tissues remains unknown. There is evidence that the feed-
ing action of aphids through the vascular system of the plant alters hormones and may be responsible 
for the initiation of the galls (Wool 2005). In Thysanoptera, gall formation is the result of the feeding 
activity of insects. By feeding on the plant cell content, one at a time, these insects alter the course of leaf 
expansion; the lamina becomes distorted because of distinct sites of hypoplasia and hyperplasia (Souza 
et al. 2000), and groups of necrotic cells (Mound and Morris 2005). In the case of the Thysanoptera, the 
epidermal or mesophyll cells near the feeding sites (Ananthakrishnan and Raman 1989) are stimulated 
by an unknown mechanism (Mound and Kranz 1997) to return to their meristematic potentialities and 
produce a new structure.

The complexity of the gall systems may be higher when a third organism participate in the forma-
tion of the gall, as in the galls of ambrosia, or when the gall morphology is modified by inquilines and 
parasitoids, as is the case of many Cynipidae (Stone et al. 2002) and few Cecidomyiids (e.g., Fernandes 
et al. 1987). An example of this phenotype alteration was reported in the galls of Anadiplosis sp. whose 
larvae are parasitized by two plastygasterids, two eurytomids, and a tanaostigmatid (Hymenoptera). 
Galls due to this last parasitoid are distinguished from the others by their consistency, larger size, and 
different shape (Fernandes et al. 1987). Once it is common sense that the maintenance of gall develop-
ment and its final size and shape are under the influence of the feeding activity of the gall maker, a third 
trophic level inside the gall may intermediate this feeding behavior or even block it. The first case is 
exemplified by ambrosia galls, in which the insects feed on the fungi and not on the plant cells. Thus, 
it seems plausible that the signaling molecules that trigger plant tissue transformation come from the 
fungi, whereas in the latter case, the end or the switch of an insect feeding activity inside the chamber 
alters cell fates.

The phase of growth and differentiation of the gall is the period in which its biomass increases remark-
ably due to the increased number of cells—hyperplasia (cell division) and/or hypertrophy (increase in 
cell size). As stated by Moura et al. (2009) and Oliveira and Isaias (2010a), these processes take place 
in all three plant tissue systems, but are more evident and crucial for gall functioning in the cells that 
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originated from the ground meristem. Both hyperplasia and hypertrophy are defined by the feeding 
activity of larvae, whose saliva seems to modify the cell wall and dissolve cell contents. The activity 
then defines the form of the larval chamber, and possibly the external shape of the gall (Rohfritsch and 
Shorthouse 1982). However, in the Brazilian flora, some gall phenotypes are so peculiar and the larval 
chamber so small that it seems less difficult to assume just the feeding activity as responsible for the gall 
phenotype. This is the case of the horn-shaped galls on C. langsdorffii (Fabaceae) (Oliveira et al. 2008), 
the bivalve-shaped galls on Lonchocarpus muehlbergianus (Ferreira et al. 1990; Oliveira et al. 2006), 
and the bud galls of Guapira opposita (Nyctaginaceae) (Araújo 2008), for instance. Perhaps, the pheno-
lics–auxin balance in these galls may be more important than the feeding sites for the definition of the 
gall size and shape by the time of its maturity.

The maturation phase of the gall occurs when the insect is in its last instar. This is the main trophic 
phase of the gall inducer, and that is the time when it eats an expressive mass of nutritive tissue. Then, 
the inner cortex will disappear under the control of the inducer, and the outer cortex of the gall, which 
is more under the influence of the plant (Dreger-Jauffret and Shorthouse 1992) will have its resources 
totally drained. Finally, the stage of dehiscence or the opening of the gall occurs at the end of the matura-
tion phase, when the greatest physiological and chemical changes occur in the gall tissues. By the end of 
this phase, the flow of nutrients and water stops.

16.9 Gall Classification

Galls can be classically classified as either organoids or histioids, due to the developmental potentialities 
expressed by their cells (Meyer 1987; Dreger-Jauffret and Shorthouse 1992). The galls of the organoid 
type are those that differ little from the growth pattern of the host organ, which even galled, does not 
lose its identity. The organoid galls are represented by a swelling, callus-like growth, usually induced 
by insects and fungi. The galls of the histioid type exhibit a great variety of abnormal structures, the 
growth patterns of the host organ are changed, and the rearrangement or induction of new types of tis-
sues occur. The histioid galls can be divided into cataplasmic and prosoplasmic. The cataplasmic galls 
are amorphous and vary in volume and extent; they are less organized and differentiated from the host 
body, consisting mainly of different layers of histologically homogeneous parenchyma. Generally, the 
Hemiptera induce cataplasmic galls. The prosoplamic galls are highly organized, with definite size and 
shape. Histologically, they are more complex and composed of differentiated tissues, although the degree 
of tissue differentiation is variable and dependent on the inducing insect. Also, independently of the 
gall type, the inducing insects are usually sedentary and therefore the site of stimulation and control of 
morphogenesis is restricted.

Different systems of classification of morphological types of galls are adopted. One of the first clas-
sification was proposed by E. Kuster in 1903 (Larew 1982) on the basis of the position of the gall and 
the type of gall development. Such classification includes just leaf galls and has been currently used. It 
proposes six main models of gall formation (Figure 16.7). Covering galls: in this gall type, the insect 
becomes encapsulated within the gall, which may present an opening (ostiole/operculum) or not. Filz 
galls: these galls are characterized primarily by dense pubescence in their outer walls (usually leaves), 
which houses the inducers. Roll and fold galls: these galls present differential growth caused by the 
feeding habits of the insect, resulting in winding, twisting, or folding of leaves and branches, which are 
often swollen. Pouch galls: in this gall type, tissue growth occurs in a restricted area around the larva, 
producing an invagination by differential growth on one side of the leaf blade. The gall tissues may 
have different degrees of differentiation, and the epidermis of the larval chamber originates from the 
epidermis of the plant body. Mark galls: these are the galls in which the eggs are oviposited on the plant 
surface; then, the first instar larvae penetrate the tissue that proliferates and surrounds it completely. Pit 
galls: these galls are characterized by a slight depression where the insect feeds, sometimes surrounding 
a protruding halo. Sometimes the epidermis forms a vesicle (discoid gall or blister galls). Bud or Rosette 
galls: these models cause the growth of buds or, sometimes, the proliferation and miniaturization of new 
leaves. There is a marked shortening of internodes. In Figure 16.8 some types of galls found on several 
Brazilian host plants are illustrated.
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16.10 Adaptive Significance

The adaptive significance of the habit of inducing galls was currently revised (Price et al. 1986, 1987; 
Stone and Schönrogge 2003). At least one researcher hypothesized that galls do not have any adaptive 
value either for the insect or for the plant (Bequaert 1924), while another one proposed that they may 
have an adaptive value only for the host plant (Mani 1964).

According to the hypothesis of the adaptive value of galls for the plant, galls should limit the move-
ment of the insect, restricting it in space and time, and thus, the gall structure should be just a defensive 
structure. Most of the evidences do not support this hypothesis since galls act as sinks, translocating 
nutrients from other plant parts and limiting the growth and reproduction of host plants. These two 
hypotheses have few defenders today because the studies in recent decades have shown that galls prob-
ably both have an adaptive significance and are a detrimental structure to the host plant. Several lines of 
evidence illustrate the impact of galls on the fitness of their host plants (e.g., Fernandes 1987; Fernandes 
et al. 1993). Three other hypotheses advocate that the gall should present an adaptive value for the insect: 
the nutritional, the enemy-free space, and the microenvironmental hypotheses (reviewed by Price et al. 
1987).

The nutritional hypothesis is supported by several studies that show that the galling insect is able to 
manipulate the host plant, inducing the formation of a nutritionally superior tissue (see Section 16.7) in 
comparison to the other non-galled tissues of the host plant (Shannon and Brewer 1980; Rohfritsch and 
Shorthouse 1982; Bronner 1992). This nutritive tissue is also free of defensive secondary compounds 
(Larew 1982; Price et al. 1986, 1987; Nyman and Julkunem-Tiito 2000). Studies on galls induced by 
tenthredinids on species of willow (Salix) in the United States showed that defensive substances, mainly 
phenolic compounds, are common in the outer cortex of the galls, suggesting that the insect can benefit 
from their defensive properties against other insects (Larew 1982; Cornell 1983; Taper and Case 1987). 
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Figure 16.7 Morphological types of galls based on position of galling herbivores and gall development (Larew 1982): 
(a) healthy leaf lamina; (b) hairy galls; (c) mark galls; (d) discoid or vesicular gall; (e and f) pouch galls; (g) roll galls; 
(h and i) fold galls; (j and k) covering galls; (l) healthy shoot; (m) covering fall; (n) typical gall with several chambers; 
(o) healthy apical shoot; (p) rosette gall (with increased number of leaves); and (q) bud gall (reduced number of leaves). 
(From Dreger-Jauffret, F. and J. D. Shorthouse, Diversity of gall-inducing insects and their galls. In Biology of Insect-
Induced Galls, ed. J. D. Shorthouse and O. Rohfritsch, 8–33. Oxford: Oxford University Press, 1992. Illustration courtesy 
of Miriam Duarte.)
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(a) (b) (c)
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Figure 16.8 Several morphotypes of galls in different host plants: (a) amorphous galls of thrips in Myrtaceae from 
Cerrado; (b) discoid galls of Cecidomyiidae in Davilla rugosa from Cerrado; (c) discoid galls of Cecidomyiidae in 
Sacoglotis matogrossensis from Amazonia; (d) leaf gall of Cecidomyiidae in Vismia latifolia from Amazonia; (e) insect 
galls in Trattinickia rhoifolia (Burseraceae) from Amazônia; (f) elliptical gall at leaf margin in Vismia latifolia from 
Amazonia; (g) elliptical galls in stem of Baccharis cf. trimera in Ouro Preto, MG; (h) galls of a Cecidomyiidae in 
Anacardium occidentale from Amazonia; (i) galls in a bud of an unidentified host plant species from Amazônia; ( j) cylin-
drical galls of a Cecidomyiidae in an unidentified host plant species from Cerrado; (k) galls of Parkiamyia paraensis 
Maia in Parkia pendula; (l) spheroid hairy gall of a Cecidomyiidae in Mimosa sp. from Amazônia; (m) spherical or 
pineapple-like galls in Chrysothmanus nauseosus from Sonoran Desert, USA; (n) galls of Hymenoptera in Mimosa sp. 
from Amazonia; and (o) galls of Paradasineura admirabilis Maia in leaves of Erythroxylum suberosum (Erythroxylaceae) 
from Cerrado. (Photos courtesy of G. W. Fernandes.)
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The gall acts as a mobilizing sink of nutrients from the other tissues of the host plant (Fay et al. 1993; 
Larson and Whitham 1991). The enemy hypothesis argues that galling insects are less predated and/or 
parasitized when compared with other phylogenetically close insects, but with a different feeding habit. 
For example, galls induced by tenthredinids are attacked by fewer parasitoid species and have lower 
mortality rates than free-living ones (Price and Pschorn-Walcher 1988). Nevertheless, according to Stone 
and Schönrogge (2003), some other galling herbivores are more attacked than their free-living relatives.

Some external features of galls may reduce the rates of attack by natural enemies. For example, 
increasing size (Stone et al. 2002; Weis et al. 1985; Rossi et al. 1992) or hardness (Weis 1982; Stone et 
al. 2002), or the presence of trichomes may reduce the attack by parasitoids and other natural enemies. 
The North American system E. solidaginis–S. altissima (Abrahamson and Weis 1997) has been widely 
studied in recent decades, and can help understand these different strategies. The success of Eurytoma 
gigantea Walsh in the parasite insect gall E. solidaginis depends on the ratio between the size of its ovi-
positor and the thickness of the gall. When the ratio exceeds 0.95 (a parasitoid with an ovipositor 10 mm 
in length can lay eggs on a branch with a wall of up to 9.5 mm), the parasitoid cannot successfully make 
the oviposition (Weis et al. 1985). Moreover, galls with greater diameter have greater chance of Eurosta 
being attacked by birds (e.g., woodpecker Picoides pubescens) than smaller galls (Abrahamson and 
Weis 1992). Thus, parasitoids and predators act as a selective force (“directional”) about the size of the 
gall in different directions, first to increase the size of the gall and second in order to decrease it. Hence, 
there is a stabilizing selection favoring the differential reproduction and survival of galls of intermedi-
ate size. However, other studies did not statistically support this assertion (for a complete analysis, see 
Abrahamson and Weis 1997).

The beetle weevil C. clitelae Boheman, commonly found in the Brazilian Cerrado, induces galls with 
several chambers on S. lycocarpum (Solanaceae) (Souza et al. 1998, 2001). Although the beetle prefer-
ably attacks small plants, the size of their galls and the number of larvae per gall increase with the size 
of the branch. As in the case of E. solidaginis, the larger galls of C. clitelae are most often preyed on by 
the Cerrado woodpecker, Colaptes campestre.

The microenvironmental hypothesis states that because galls are sessile and protected by their struc-
ture, the galling larvae are less susceptible to abiotic environmental changes, particularly temperature 
and humidity (Fernandes and Martins 1985; Price et al. 1987). Hygrothermal and nutritional stress, 
defined here as high temperature and low humidity, and nutritional quality of the plants (Fernandes 
and Price 1988) should be the crucial environmental factors acting on the selective evolution of galling 
insects. The damage caused by herbivores on their host plants, preserved in the fossil record, showed its 
maximum in the Middle Eocene (a period characterized by a subtropical climate; less humidity; and a 
dry, defined, and cold weather), indicating a high diversity of galling organisms in xeric environments 
(Wilf et al. 2001). Recent studies support the assertion that galling insects are richer in species and more 
abundant in hygrothermal and nutritionally stressed habitats, with sclerophyllous vegetation in tropical 
and temperate regions (Price et al. 1998).

At the habitat or environmental scale, Fernandes and Price (1988, 1991, 1992) proposed the hygrother-
mal stress hypothesis that predicts that species richness and abundance of galling insects is higher in 
stressed hygrothermal habitats (i.e., in dry and sunny habitats) usually covered by sclerophyllous vegeta-
tion, with leaves of high phenolic compounds and low levels of nutrients (Turner 1994; Fernandes and 
Price 1991). The hypothesis of hygrothermal stress combines arguments of the three hypotheses about 
the adaptive nature of the habit of inducing galls to explain the distribution patterns of galling insects 
in ecological time (Fernandes et al. 2005). Also, Fernandes and Price (1991) observed that the negative 
relationship between altitude and the richness of the species of galling insects was dependent on the type 
of habitat. The richness of insect species is related to altitude in xeric habitats, but not in mesic ones at 
the same altitude, suggesting that the relationship between altitude and species richness is spurious and 
that hygrothermal stress is the key factor determining species richness of galling insects. This conclu-
sion is supported by the latitudinal pattern: the richness of the species of galling insects is greatest in 
intermediate latitudes (25–40° north or south), coinciding with habitats submitted to water and nutrition 
stresses with sclerophyllous vegetation (e.g., Cerrado, Chaparral, and vegetation of the Mediterranean 
type) (Fernandes and Price 1988, 1991; Blanche and Westoby 1995; Lara and Fernandes 1996; Wright 
and Samways 1998; Price et al. 1998).
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A few patterns have been proposed on the habit of inducing galls. First, that galls may confer effective 
protection against climatic variation (Price et al. 1987). Second, considering that some plant nutrients 
become toxic at high levels, and that the gall acts as a sink of nutrients from other plant parts (Nyman 
and Julkunen-Tiitto 2000), inducing insects may have more success in stressed habitats. This second pat-
tern is based on the fact that in these habitats, plants tend to have low nutritional status (Fernandes and 
Price 1991), with low concentration of nutrients, and an excess of secondary compounds (Müller et al. 
1987). Furthermore, gall-inducing insects are able to overcome these defensive substances, inducing a 
tissue free of phenolic compounds and high in nutrients (Larew 1982; Nyman and Julkunen-Tiitto 2000). 
The third factor that may modulate the pattern of species richness is a differential selective pressure 
inflicted by natural enemies, and plant resistance between xeric and mesic habitats on galling herbivores 
(Fernandes 1990, 1998; Fernandes and Price 1988, 1992). In summary, galls probably have an adaptive 
value for insects. The evolution of the habit of inducing galls can be explained by the action of different 
selective forces. The end result is the formation of a tissue rich in nutrients (according to the prediction 
of the nutritional hypothesis), and the development of galls with external structures and varying sizes in 
response to environmental pressures (according to the assumptions provided by the microenvironmental 
and enemy-free space hypotheses).

16.11 Concluding Remarks

In this chapter we discussed several aspects regarding insect galls and the main gall-inducing insect 
taxa, how insects select their host plants, how galls develop in plants, how they are classified, and their 
adaptive significance. In addition to these aspects, it should be mentioned that insects that induce galls 
can cause significant damage to wild and cultivated plants having a great economic impact. Just to men-
tion one example, the coleopteran Sternechus subsignathus (Curculionidae) is known to feed on soybean 
plants and to cause gall formation on soybean stems; it is widely distributed, from the northeast to south-
ern Brazil, and is regarded as a main pest of this important crop (e.g., Hoffmann-Campo et al. 1991, 
Silva 1998, Silva et al. 1998). The most recent review on the subject is almost 25 years old (Fernandes 
1987); hence, a new revision is called for. We suggest that basic studies on bioecology and nutrition are 
important in order to support the managing strategies for species that has become pests.
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